Professor in Political Science and Computer and Information Science

David Lazer

How intermittent breaks in interaction improve collective intelligence

Journal Article
Publication date: 
08/2018
Authors: 
Ethan Bernstein
Jesse Shore
David Lazer
How intermittent breaks in interaction improve collective intelligence

People influence each other when they interact to solve problems. Such social influence introduces both benefits (higher average solution quality due to exploitation of existing answers through social learning) and costs (lower maximum solution quality due to a reduction in individual exploration for novel answers) relative to independent problem solving. In contrast to prior work, which has focused on how the presence and network structure of social influence affect performance, here we investigate the effects of time. We show that when social influence is intermittent it provides the benefits of constant social influence without the costs. Human subjects solved the canonical traveling salesperson problem in groups of three, randomized into treatments with constant social influence, intermittent social influence, or no social influence. Groups in the intermittent social-influence treatment found the optimum solution frequently (like groups without influence) but had a high mean performance (like groups with constant influence); they learned from each other, while maintaining a high level of exploration. Solutions improved most on rounds with social influence after a period of separation. We also show that storing subjects' best solutions so that they could be reloaded and possibly modified in subsequent rounds - a ubiquitous feature of personal productivity software - is simiar to constant social influence: It increases mean performance but decreases exploration.

Research Areas TOC

Computational Social Science, 21st Century Democracy, Political Networks

Computational Social Science, Collective Cognition

DNA and the Criminal Justice System